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Abstract— In this extended abstract, we present our latest
research in learning deep sensorimotor policies for agile vision-
based quadrotor flight. Instead of relying on an accurate 3D
representation of the environment, our research focuses on
learning-based approaches that directly map onboard sensory
observations to control commands. We show methodologies for
successful transfer of such policies from simulation to the real
world. In addition, we discuss the open research questions that
still need to be answered to improve the agility and robustness
of autonomous drones.

I. INTRODUCTION

Quadrotors are among the most agile and dynamic ma-
chines ever created. However, developing fully autonomous
quadrotors that can approach or even outperform the agility
of birds or human drone pilots with only onboard sensing
and computing is very challenging and still unsolved. One
of the main challenges that have blocked progress towards
human-level autonomous flight performance is perception.
This challenge is highlighted by the fact that there are
methods that demonstrate impressive feats with quadrotors in
controlled environments [1]–[3], while approaches that rely
on onboard sensing are constrained to substantially lower
agility [4], [5].

Data-driven approaches in the form of neural networks
have recently gained a lot of interest due to their potential
to make perception robust to noisy real-world data. Recent
approaches propose to learn representations of scenes and
objects [6], [7] to improve down-stream tasks such as motion
planning, manipulation, or pose estimation [8].

In this extended abstract, we summarize our latest research
on learning deep sensorimotor policies for agile vision-based
quadrotor flight. In contrast to learning a representation
of the robot’s surrounding that is then combined with a
navigation module, our policies represent a holistic approach
to autonomous navigation that directly maps onboard sensory
observations to commands, without enforcing any inter-
mediate representation of geometry. We train our policies
exclusively in simulation and achieve successful transfer to
the real platform by leveraging a combination of domain
randomization and abstraction of sensory observations. Our
policies enable autonomous quadrotors to fly faster and more
agile than what was possible before with only onboard
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Fig. 1: Our drone flying at high speed through a forest using
only onboard sensing and computing.

sensing and computation, raising the question if accurate
knowledge of the 3D surroundings is actually needed for
high-speed navigation.

II. HIGH-SPEED FLIGHT IN THE WILD

We have developed an end-to-end approach that can
autonomously fly quadrotors through complex natural and
human-made environments at high speeds, with purely on-
board sensing and computation. The key principle is to
directly map noisy sensory observations to collision-free
trajectories in a receding-horizon fashion. This direct map-
ping drastically reduces processing latency and increases
robustness to noisy and incomplete perception. The sensori-
motor mapping is performed by a convolutional network that
is trained exclusively in simulation via privileged learning:
imitating an expert with access to privileged information.
We leverage abstraction of the input data to transfer the
policy from simulation to reality [9], [10]. To this end, we
utilize a stereo matching algorithm to provide depth images
as input to the policy. We show that this representation
is both rich enough to safely navigate through complex
environments and abstract enough to bridge the gap between
simulation and real world. By combining abstraction with
simulating realistic sensor noise, our approach achieves zero-
shot transfer from simulation to challenging real-world envi-
ronments that were never experienced during training: dense
forests, snow-covered terrain, derailed trains, and collapsed
buildings. Our work demonstrates that end-to-end policies
trained in simulation enable high-speed autonomous flight
through challenging environments, outperforming traditional
obstacle avoidance pipelines. A qualitative example of flight
in the wild is shown in Figure 1.
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Fig. 2: Our quadrotor performs a Matty Flip. The drone
is controlled by a deep sensorimotor policy and uses only
onboard sensing and computation.

III. ACROBATIC FLIGHT

Acrobatic flight with quadrotors is extremely challenging.
Human drone pilots require many years of practice to safely
master maneuvers such as power loops and barrel rolls. For
aerial vehicles that rely only on onboard sensing and compu-
tation, the high accelerations that are required for acrobatic
maneuvers together with the unforgiving requirements on the
control stack raise fundamental questions in both perception
and control. For this reason, we challenged our drone with
the task of performing acrobatic maneuvers [10]. In order
to achieve this task, we trained a neural network to predict
actions directly from visual and inertial sensor observations.
Training is done by imitating an optimal controller with
access to privileged information in the form of the exact
robot state. Since such information is not available in the
physical world, we trained the neural network to predict
actions instead from inertial and visual observations.

Similarly to previous work, all of the training is done in
simulation, without the need of any data from the real world.
We achieved this by using abstraction of sensor measure-
ments, which reduces the simulation-to-reality gap compared
to feeding raw observations. Both theoretically and exper-
imentally, we have shown that abstraction strongly favours
simulation-to-reality transfer. The learned policy allowed our
drone to go faster than ever before and successfully fly
maneuvers with accelerations of up to 3g, such as the Matty
flip illustrated in Figure 2.

IV. AUTONOMOUS DRONE RACING

Drone racing is an emerging sport where pilots race
against each other with remote-controlled quadrotors while
being provided a first-person-view (FPV) video stream from
a camera mounted on the drone. Drone pilots undergo years
of training to master the skills involved in racing. In recent
years, the task of autonomous drone racing has received
substantial attention in the robotics community, which can

Fig. 3: The perception component of our system, represented
by a convolutional neural network (CNN), is trained only
with non-photorealistic simulation data.

mainly be attributed to two reasons: (i) The sensorimo-
tor skills required for autonomous racing would also be
valuable to autonomous systems in applications such as
disaster response or structure inspection, where drones must
be able to quickly and safely fly through complex dynamic
environments. (ii) The task of autonomous racing provides a
simple and objective comparison between both robotic and
human baselines, which makes it an ideal candidate for a
new robotics benchmark.

One approach to autonomous racing is to fly through the
course by tracking a precomputed, potentially time-optimal,
trajectory [2]. However, such an approach requires to know
the race-track layout in advance, along with highly accurate
state estimation, which current methods are still not able
to provide. Indeed, visual inertial odometry is subject to
drift in estimation over time. SLAM methods can reduce
drift by relocalizing in a previously-generated, globally-
consistent map. However, enforcing global consistency leads
to increased computational demands that strain the limits of
on-board processing.

Instead of relying on globally consistent state estimates,
we deploy a convolutional neural network to identify the next
location to fly to, also called waypoints. However, it is not
clear a priori what should be the representation of the next
waypoint. In our works, we have explored different solutions.
In our preliminary work, the neural network predicts a fixed
distance location from the drone [11]. Training was done by
imitation learning on a globally optimal trajectory passing
through all the gates. Despite being very efficient and easy to
develop, this approach cannot efficiently generalize between
different track layouts, given the fact that the training data
depends on a track-dependent global trajectory representing
the optimal path through all gates.

For this reason, a follow-up version of this work proposed
to use as waypoint the location of the next gate [12]. As
before, the prediction of the next gate is provided by a
neural network. However, in contrast to the previous work,
the neural network also predicts a measure of uncertainty.

Even though the waypoint representation proposed in [12]
allowed for efficient transfer between track layouts, it still
required substantial amount of real-world data to train.



Collecting such data is generally a very tedious and time
consuming process, which represents a limitation of the two
previous works. In addition, when something changes in
the environment, or the appearance of the gates changes
substantially, the data collection process needs to be repeated
from scratch. For this reason, in our recent work [13] we
have proposed to collect data exclusively in simulation. To
enable transfer between the real and the physical world,
we randomized all the features which predictions should be
robust against, i.e. illumination, gate shape, floor texture, and
background. A sample of the training data generated by this
process, called domain randomization, can be observed in
Figure 3. Our approach was the first to demonstrate zero-
shot sim-to-real transfer on the task of agile drone flight. A
collection of the ideas presented in the above works has been
used by our team to successfully compete in the alpha-pilot
competition [14].

V. FUTURE WORK

Our work shows that neural networks have a strong poten-
tial to control agile platforms like quadrotors. In comparison
to traditional methods, neural policies are more robust to
noise in the observations and can deal with imperfection in
sensing and actuation. However, the approaches presented in
this extended abstract fall still short of the performance of
professional drone pilots. To further push the capabilities of
autonomous drones, a specialization to the task is required,
potentially through real-world adaptation and online learning.
Solving those challenges could potentially bring autonomous
drones closer in agility to human pilots and birds.
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